(Puzzles) Challenging Mathematical Puzzles (35)

Puzzles : Challenging Mathematical Puzzles

119. Veeru says to Jay, "Can you figure out how many Eggs I have in my bucket?" He gives 3 clues to Jay: If the number of Eggs I have
1. is a multiple of 5, it is a number between 1 and 19
2. is not a multiple of 8, it is a number between 20 and 29
3. is not a multiple of 10, it is a number between 30 and 39

How many Eggs does Veeru have in his bucket?

Answer : -
32 eggs

Let's apply all 3 condition separately and put all possible numbers together.

First condition says that if multiple of 5, then the number is between 1 and 19. Hence, the possible numbers are (5, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39)

Second condition says that if not a multiple of 8, then the number is between 20 and 29. Hence, the possible numbers are (8, 16, 20, 21, 22, 23, 25, 26, 27, 28, 29, 32)

Third condition says that if not a multiple of 10, then the number is between 30 and 39. Hence, the possible numbers are (10, 20, 31, 32, 33, 34, 35, 36, 37, 38, 39)

Only number 32 is there in all 3 result sets. That means that only number 32 satisfies all three conditions. Hence, Veeru have 32 eggs in his bucket.

 

120. Mr. Black, Mr. White and Mr. Grey were chatting in the Yahoo conference. They were wearing a black suit, a white suit and a grey suit, not necessarily in the same order.

Mr. Grey sent message, "We all are wearing suit that are of the same color as our names but none of us is wearing a suit that is the same color as his name."
On that a person wearing the white suit replied, "What difference does that make?"
Can you tell what color suit each of the three persons had on?

Answer : -
Mr. Grey is wearing Black suit.
Mr. White is wearing Grey suit.
Mr. Black is wearing White suit.

Mr. Grey must not be wearing grey suit as that is the same colour as his name. Also, he was not wearing white suit as the person wearing white suit responded to his comment. So Mr Grey must be wearing a black suit.

Similarly, Mr. White must be wearing either black suit or grey suit. But Mr. Grey is wearing a black suit. Hence, Mr. White must be wearing a grey suit.

And, Mr. Black must be wearing white suit.

 

121. Substitute numbers for the letters so that the following mathematical expressions are correct.

ABC DEF GHI
--- = IE --- = IE --- = IE
3 6 9
Note that the same number must be used for the same letter whenever it appears.

Answer : -
A=2, B=1, C=9, D=4, E=3, F=8, G=6, H=5, I=7

Let's start with GHI = 9 * IE. Note that I appears on both the side. Also, after multiplying IE by 9 the answer should have I at the unit's place. The possible values of IE are 19, 28, 37, 46, 55, 64, 73, 82 and 91; out of which only 64, 73 and 82 satisfies the condition. (as all alphabet should represent different digits)

Now, consider DEF = 6 * IE. Out of three short-listed values, only 73 satisfies the equation. Also, ABC = 3 * IE is satisfied by 73.

Hence, A=2, B=1, C=9, D=4, E=3, F=8, G=6, H=5, I=7

219 438 657
--- = 73 --- = 73 --- = 73
3 6 9

 

122. A, B, C and D are related to each other.
    -One of the four is the opposite sex from each of the other three.
    -D is A's brother or only daughter.
    -A or B is C's only son.
    -B or C is D's sister.

Answer : -
  A, B & D are males; C is female. B is C's only son. A & D are C's brothers.
A(male) --- C(female) --- D(male)

    |

    |

B(male)

Work out which relation can hold and discard the contradictory options.

From (2) and (4), D can not be a only daughter and have a sister (B or C). Hence, D is A's brother i.e. D is a Male.

From (4), let's say that B is D's sister i.e. B is Female.
From (3), A is C's only son i.e. A is Male.
But D is A's brother which means that A is not C's only son. Hence, our assumption was wrong.

Thus, C is D's sister i.e. C is Female. And B must be C's only son.

Now it is clear that D & B are Males and C is Female. A must be a Male as only one of them is of opposite sex from each of the other three. And he is C & D's brother.How are they related to each other?

 

PREVIOUS      NEXT

   START